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ON THE EXTREMAL FUNDAMENTAL FREQUENCIES
OF VIBRATING BEAMSTt
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Abstract—Bernoulli-Euler Beams with variable cross section are optimized with respect to their fundamental
frequency of transverse oscillation. The cross section is allowed to vary in a manner such that the second area
moment 1s linearly related to the area. Using calculus of variations, the fundamental frequency is made stationary.
The closed-form solution is found for all sets of homogeneous boundary conditions. In most cases. the resulting
beam is uniform. however. the frequency in some cases is a minimum. others a maximum. For cantilever and
free-free beams no maximum fundamental frequency exists for this type of cross section variation.

1. INTRODUCTION

THERE has been much effort recently in the area of the optimum design of vibrating elastic
elements. Niordson [1] has shown that for simply supported beams with similar cross
sections, the fundamental frequency of transverse vibration can be maximized by tapering
the beam. The maximum value is about 6:6 %, larger than the corresponding uniform beam.
In [2]. Brach considers the minimum transient response of beams. Starting with the Action
Integral. Taylor [3] has developed the Euler equations for a sandwich cantilever beam
whose solution furnishes the stationary value of the fundamental frequency. He gives the
solution when the structural mass is very small compared to a distribution dead (non-
structural) mass. Also in [3] as well as Turner [4]. the maximum fundamental frequency of
an elastic bar vibrating axially is considered.

In all of the previous work concerning transverse vibration, the second area moment is
assumed to be proportional to either the first, second, or third power of the area {(or mass).
This excludes many practical sections such as I-beams and hollow sections. In this paper
a linear relationship is used : this is discussed in Section 2. The extremal values of the funda-
mental frequency are found using variational calculus techniques. The closed-form solution
of the resulting Euler equations is found for all types of homogeneous boundary conditions.
The solution reveals that the extremal frequencies in some cases are minima. sometimes
maxima and in some cases neither. Bernoulli-Euler beam theory is used.

2. CROSS SECTIONAL GEOMETRY

From classical vibration theory a linear elastic beam can vibrate harmonically in
any one (or linear combination) of an infinite number of characteristic shapes, W,. The
characteristic equation is

d? 42w, i}
a2 EI(Q)'EE—; —wipAGW, =0. n=12,... (1)
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where
A = cross sectional area, E = modulus of elasticity. | = second area moment.
L = length of the beam. W = transverse deflection, { = coordinate along the beam.

0 < ¢ < L, p = density of the beam material, and w, = eigenvalue.

It is not too difficult to show that if a rectangular cross section has a fixed width and variable
height, the second area moment is proportional to the cube of the area. If the height and
width vary with constant ratio, the second area moment is proportional to the square of
the area. Finally if only the width varies, the proportion is linear. That is [(¢) = cpA()
where ¢, is a constant implicitly depending upon p and p = 1, 2, or 3. If the cross section is
not simply rectangular but does have a constant height the relationship is no longer pro-
portional but does remain linear.

Let x = &L and a(x) = LA(x)/V. In terms of these quantities, the linear area-area
moment relationships are x(x) = f,+ Bix) and I(x) = ¢y +¢B(x). The expression for x
includes a fixed area, f,, plus a variable portion. B{x). The quantity ¢y, is the second area
moment corresponding to the fixed area 8, ; ¢f(x) is the second area moment corresponding
to the variable area B(x). Also, ¢ is a constant. Some typical examples are shown in Table 1.

TaBLE 1. EXAMPLE CROSS SECTIONS
area. x = f+ f,: second area moment, | = ¢yo+cf

-
B = 2bt/V B = bhiV B o= bV
Bo = whiV Bo =0 By = twh—wh) 'V
¢ o= (4 + 3V 2 = Vhi12 ¢ o= ph*12
e = w12 vo =0 cvo = (wh?—w h3)V 12
‘0 < Bo 7o = fo Yo = By

Note: {a) For all cross sections shown the quantity b is permitted to vary along the span. other dimensions are
constant: fixed area is cross hatched.
{b) The quantity V is the total volume of the beam : the length L is unitv.

Both 4 and f, are positive since they are area moment and area respectively : the examples
show that their ratio can be less than, equal to, or greater than one.

Using these relationships and the nondimensional quantities defined above, (1) can be
written as

(B+70W, ] —vilB+ )W, =0, n=12 2)

where v; = wi(pV L Ec).



On the extremal fundamental frequencies of vibrating beams 669

3. VARIATIONAL EQUATIONS

The problem to be solved here is to determine the extremal values of v, the nondimen-
sional fundamental natural frequency where vi > 0. If (2) is multiplied by W, and integrated
over the range 0 to 1, an expression for v is obtained. This is

vz=JaW+ywwwrwadxzfaﬂ+MNWWde
' [2B+ o)W dx [3B+Bo)Widx

The second numerator is obtained if the first is integrated twice by parts and the following
boundary conditions are used :

(B+yoWI[W1=0 atx=0 and 1
and {4)
[(B+y)WiT[W ] =0 atx =0 and 1.

(3)

All further results are for boundary conditions (4). In (3), v is a functional in the form of a
quotient of two nonnegative integrals. The following method of deriving the necessary
conditions for an extremal of v differs in technique from Niordson’s method [1]. The
following procedure is followed since it permits the introduction of multiple constraints in a
more straight forward manner. It has been shown [5] that the stationary values of (3)
correspond to the stationary values of a functional J, where

1
J = f [B+70) (W —v3(B+Bo)W?] dx. (5)
0

In (5) v? is the stationary value of v and the subscript has been omitted from W,.

In order to make the solutions (extremal values of the frequency) practical, it is necessary
to add constraints to the problem. It is necessary to require that f > 0 since by definition,
area must be positive. Actually, let § = C, > 0 where C, is an arbitrary constant. In addi-
tion, the amount of material in the beam is restricted to be finite: this leads to f < C,:
C, > C,. In this case the constant C, can be evaluated by the integral

1
[ epoax=1. (©
0]

This requires that the integral of the total area over the beam must equal the volume, V.,
where Vis finite. These constraints will be enforced using the method of Lagrange muiti-
pliers. To transform them to equality constraints. two real variables u(x) and v(x) are
defined such that

ﬁ"’ Cl '_ul = 0
and (7)
C,—f~t?=0.
(Both constraints could be combined and treated with a single Lagrange multiplier [6]
but the above approach yields slightly simpler expressions.)

At this point the problem is to find the stationary values of J subject to the constraints
(7). The first variation of an augmented functional, J*, with respect to each of the variables
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B. W, u, and v is set to zero, to form the necessary conditions. The functional is

~1
* = J vt (A —C = ul)+2Cy— =) dx.
o)
where 4, and 4, are Lagrange multipliers. Since f(x) and W(x) are not independent (they
are related through the characteristic equation, (2)), the variation with respect to these
two variables must be simultaneous. This vields the first Euler equation:

°F CF i
5% = \ e W+ SW (h,— i j08 | dx = 0 (8]
I (/3 cw” cW

o

where F is the integrand of (5). Note that

) aFVt+Fovvci—‘ Ll K G P
JO W W <=1 w TEw o

This follows by twice integrating the first term by parts and applying the boundary condi-
tions (4). It is required that the admissible functions satisfy the boundary conditions.
Further note that

P wae = o LB+ 70 W =i+ Bo) oW d
T YT x =21 Yo —v i X
dxz\éw” +€W v Jr) T o) ’

By (2) this integrand is zero. This shows that the variation of J* with respect to W to
identically zero and thus can be disregarded. This was also found by Niordson {1] and
Taylor [3]. As a result (8) reduces to

. T
5% = J Va4 0B dx = 0.
(,‘[3
Since this must be true for arbitrary variations, op. of 3. the integrand must be zero. This
gives the first Euler equation:

(W) = W24, -4 =0 19)
This has the same form as equation (20) in [3]. The independent variations with respect

to u and v furnish the remaining two Euler equations. respectively :
Agt = 0 (10)

AL =0 (1h

Assuming that stationary values exist. (9), (10), and (11) are the necessary conditions. They
must be solved along with the characteristics equation {2), the boundary conditions {4)
and the constraints (7).

4. SOLUTION

Before obtaining the solution. an expression can be found which furnishes some
information concerning the Lagrange multipliers. Multiplication of (9) by (8 +7,) and
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integration (the first term again integrated by parts) leads to the relationship
fow?dx
folB+70)dx

Thus when 3y = [, the first necessary condition. (9), reduces to

fy— Ay = (Yo — ﬁo)

(W2 —v2W2 = (W' + v W) (W' —yW) =0 (9a)

This is used in the sequel.
The following possibilities can occur:

Case I: i #0 and 4. #0

Case 11: /#0 and /4, =0

Case llI: /4, =0 and 4, #0, or

CaselV: /,=0 and 4, =0 ori,—4 =0

The first case yields an unrealistic solution since this requires that both constraints in (7)
be zero simultaneously. Thus, in turn, means that § = C, and § = C, with C, > C,.
Clearly this cannot be a solution.

Case I1. Since 4, # 0, the necessary condition (10) implies that ¥ = 0. From (7) it is seen
that § = C,. From (3), this indicates the extremal value of v2is

_ Ci+yo oW dx
T Cyi+Bo [IWidx

2

(3a)

Consider now case I11.

Case 111. Here /%, # 0. From reasoning similar to the above, the extremal frequency is

given by

o+ Catyo 3P dx
T Cy+Bo [(Widx

(3b)

Before discussing (3a) and (3b) consider the quotient
{a(W")* dx
fawidx

For any given set of boundary conditions, this expression is a dimensionless number
independent of the total area (and thus independent of C, or C,){7]. Therefore the extremal
behavior depends only algebraically upon the quotient f(C¥*), where

C*+7o
C*+ By

Figure 1 shows f(C*)for 3, < B,. Itis clear that (3a)is 2 minimum and (3b) is a maximum.
On the other hand when y, > fo, Fig. 2 indicates that (3a) is a maximum while (3b) is a
minimum. Recall that C; > 0:thus C, = 0is an absolute minimum (or maximum depend-
ing on the relative magnitudes of y, and fo).

These results can be restated in the following way. The area § which yields a stationary
frequency is a constant. When y, < fo. § = C, gives a maximum: f = C, gives a mini-
mum. When y, > B,, § = C, gives a minimum, and f = C, gives a maximum. When
70 = Bo. the solution is treated separately as follows.

f(C*) = C* = C,.C,. (13)
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FIG. 1. Fundamental frequency. 7, < 8,.
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F1G. 2. Fundamental frequency, y, > 4.
Case IV. When 7, = f,, 4,— 4, = 0 and the Euler equations reduce to (9a). This equation
is the product of two linear equations,
W'+ vW = 0, (1)

one equation for each sign. Using (14), W” may be eliminated from the characteristic
equation (2). This gives
UB+70)WT v+ o)W = 0.
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If the derivative in the first term is expanded and (14} is used again, the result is
B+y)'WH+2UB+70) W = W 2EW = 0.
The second form occurs since ¥, is a constant. The first integral of this equation is simply
BW? =g (15)

where a is a constant. The value of a can be found using boundary conditions (4). Using
(14) they can be put into the form

[+ W] W] =0 atx=0and
and (16)
+V[(f+700W] W] =0 atx=0and L

The latter can be written [f'W + (8 +7,)W]W = 0, where the factor +v has been dropped.
The two boundary conditions combined required that f/W? =0 at x = 0 and x = 1.
Thus a = 0. Since W(x) = 0 is considered a trivial solution. " must be zero. This, in turn,
shows that B = constant gives a stationary value to the frequency v

The value of § can be determined from (3). Since § 1s a constant, (3) shows that when the
extremal exists, f = 1 —f,.

At this point a comment must be made concerning the boundary conditions arising
from cantilever and free-free beams. The boundary conditions (16} arising from the use of
(14) can be satisfied at the free ends only if the area is zero. Since f8 is constant, the solution
1s trivial. It is easy to demonstrate that there is no maximum frequency in these two cases.
Consider a set of mass distributions, §, for a cantilever beam made up of a deita sequence.
positive and non-increasing in 0 < x < 1, and zero at x = 1. In the limit this sequence of
shapes which satisfies the boundary condition approaches a deita function at the origin.
From (3) the fundamental frequency approaches the ratio

[W7(0)]2 /T W(0)]2.

This is unbounded and one can conclude that the frequency of a cantilever can be made as
large as possible. It is also possible to construct a cantilever with a fundamental frequency
lower than a uniform beam’s frequency. Thus = constant furnishes neither a maximum
or a minimum in these cases. A similar demonstration can be made for a free-free beam.
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ABCTpakT—OnTHMANM3KEYIOTCA Oanky  bepHyniu-Ddiepa nEpeMEHHOTO CEYEHUA OTHOCHTEABHO HX
OCHOBHOW 4ACTOTHI MOMEPEYHLIX KoJeOanui. [TonepeyHoe CeueHHE HIMEHAETCA TAKMMXKE [IYTEM. 4TO
BTOPOH MOMEHT CEYEHUS ABJIKETCA JTMHEHHOHW 3aBUCUMOCTBIO MOBEPXHOCTH CeveHus. Lcnonasiys sapuau-
MOHHOE MCHUCAEHHE. OMpPENEIAETCS OCHOBHAS 4acToTa KAk CTaunoHapHas. HaxoauTcs peweHue, B
IAMKHYTOM BUOE, LA BCCH CUCTEMbI OAHOPOIHBIX IPAHUYHBIX YCAOBUA. B 6oabwnHcTBE Ciyvaes pesyn-
bTHPYOLLAS 0anKa OKA3LIBAETCS OOAHOOOPATHON. HECMOTPA HA TO, YTO Y4CTOTA 41 HEKOTOPHIX Clyvacs
JOCTHIAET MHUHUMYM, 4 QIR APYFUX MakCuMym. OKa3bIBAETCA, YTO KOHCO/IbHBIX H CBODOOHBIX Basi0K
COBCEM HE CYUIECTBYET MAKCHMYM OCHOBHOM 4aCTOTHI, IIPH ITOM THIIE UIMEHEHHS MONEPEYHOTO CEYEHUS.



